In this paper, we consider a discrete delta-nabla boundary value problem for the fractional difference equation with p-Laplacian △v−2β(φp(b∇νx(t)))+λf(t−ν+β+1,x(t−ν+β+1),[b∇εx(t)]t−ν+β+ε+1)=0,x(b)=0,[b∇νx(t)]ν−2=0,x(−1)=∑t=0b−1x(t)A(t),\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document} $$\\begin{aligned}& {\\triangle_{v-2}^{\\beta}} \\bigl({\\varphi_{p} \\bigl({_{b}\\nabla^{\\nu }}x(t) \\bigr)} \\bigr)+{\\lambda} {f \\bigl(t-\\nu+\\beta+1,x(t-\\nu+\\beta +1), \\bigl[_{b}\\nabla^{\\varepsilon}x(t) \\bigr]_{t-\\nu+\\beta+\\varepsilon+1} \\bigr)}=0, \\\\& x(b)=0,\\quad\\quad \\bigl[_{b}\\nabla^{\\nu}x(t) \\bigr]_{\\nu-2}=0,\\quad\\quad x(-1)=\\sum_{t=0}^{b-1}{x(t)A(t)}, \\end{aligned}$$ \\end{document} where tinmathbb{T}=[nu-beta-1,b+nu-beta-1]_{mathbb{N}_{nu-beta-1}}. {triangle_{nu-2}^{beta}}, {_{b}nabla^{nu}} are left and right fractional difference operators, respectively, and varphi_{p}(s)=|s|^{p-2}s, p>1.By using the method of upper and lower solution and the Schauder fixed point theorem, we obtain the existence of positive solutions for the above boundary value problem; and applying a monotone iterative technique, we establish iterative schemes for approximating the solution.
Read full abstract