In this article, sufficient conditions for the existence of extremal solutions to nonlinear boundary value problem (BVP) of fractional order differential equations (FDEs) are provided. By using the method of monotone iterative technique together with upper and lower solutions, conditions for the existence and approximation of minimal and maximal solutions to the BVP under consideration are constructed. Some adequate results for different kinds of Ulam stability are investigated. Maximum error estimates for the corresponding solutions are given as well. Two examples are provided to illustrate the results.
Read full abstract