Abstract

In this article, we are concerned with the existence of extremal solutions to the initial value problem of impulsive differential equations in ordered Banach spaces. The existence and uniqueness theorem for the solution of the associated linear impulsive differential equation is established. With the aid of this theorem, the existence of minimal and maximal solutions for the initial value problem of nonlinear impulsive differential equations is obtained under the situation that the nonlinear term and impulsive functions are not monotone increasing by using perturbation methods and monotone iterative technique. The results obtained in this paper improve and extend some related results in abstract differential equations. An example is also given to illustrate the feasibility of our abstract results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.