The fire-resistance of carbonated concrete under high temperatures is significant due to its direct exposure during an accidental fire. To evaluate the carbonation effect on fire-resistance of concrete, the chemical and mineralogical changes of uncarbonated and carbonated cement pastes subjected to high temperatures were thoroughly investigated in this research by employing micro-measurement methods including thermal-gravimetric analysis (TGA), X-ray diffraction (XRD) and 29Si nuclear magnetic resonance (29Si NMR). Uncarbonated cement paste results showed the decomposition of portlandite at 400 °C with the formation of lime, whilst the depolymerization of C–S–H happened simultaneously to generate monomeric silicon tetrahedron. Above 720 °C, all the C–S–H depolymerized to crystalline C2S. Carbonated cement pastes on the other hand showed that amorphous calcium carbonate and part of vaterite decomposed between the range of 400–600 °C, while the rest of the vaterite and calcite were decomposed at 600–720 °C. The individual content of calcium carbonate polymorph could not be obtained using a TGA curve. Besides, the calcium-modified silicate gel was significantly decomposed at 500 °C and completely depolymerized to crystalline C2S at 950 °C. In summary, carbonated pastes show better resistance to high temperatures with its heat absorption capacity 3.3 times as high as the uncarbonated sample, which delays the temperature development in the inner layer. Therefore, a reasonable carbonation process could help to improve the fire resistance of concrete to some extent.