Nano-crystalline CdSe thin films of different thicknesses under sub-micron range were deposited on glass substrate via thermal evaporation route. A gradual deterioration in film crystallinity confirmed by XRD line profile analysis has been accompanied by a reduction in Cd to Se molar ratio as the film thickness decreases. A coordinated microstructural and crystallographic orientation distribution analysis explicitly demonstrated that CdSe tends to grow in nano-sized columns with hexagonal c-axis parallel to its growth direction on glass substrate. A thickness dependence of structural evolution was discussed in terms of aspect ratio of the columnar structure and dispersion in orientation of hexagonal (002) basal plane. The variation in the spectra of optical constants [n(λ), k(λ)] obtained from Swanepoel envelop method was interpreted in terms of crystallographic defects arising from stoichiometric disorder which was also accounted for the observed thickness dependent shifts in band gap and valence band split energy. The bathochromic shifts in dielectric and energy loss functions, optical conductivity, skin depth and cut-off energy were discussed in detail along with the variations in their spectral shapes in connection with the dispersion in the real and imaginary parts of complex refractive index, which might shed a new light upon holistic comprehension of thickness dependent optical properties of other chalcogenide semiconducting thin films.
Read full abstract