Abstract
Marine fish and shellfish are primary sources of human exposure to mercury, a potentially toxic metal, and selenium, an essential element that may protect against mercury bioaccumulation and toxicity. Yet we lack a thorough understanding of Hg and Se patterns in common marine taxa, particularly those that are commercially important, and how food web and body size factors differ in their influence on Hg and Se patterns. We compared Hg and Se content among marine fish and invertebrate taxa collected from Long Island, NY, and examined associations between Hg, Se, body length, trophic level (measured by δ15N) and degree of pelagic feeding (measured by δ13C). Finfish, particularly shark, had high Hg content whereas bivalves generally had high Se content. Both taxonomic differences and variability were larger for Hg than Se, and Hg content explained most of the variation in Hg:Se molar ratios among taxa. Finally, Hg was more strongly associated with length and trophic level across taxa than Se, consistent with a greater degree of Hg bioaccumulation in the body over time, and biomagnification through the food web, respectively. Overall, our findings indicate distinct taxonomic and ecological Hg and Se patterns in commercially important marine biota, and these patterns have nutritional and toxicological implications for seafood-consuming wildlife and humans.
Highlights
Seafood is an important source of lean protein for humans and piscivorous wildlife
Either focused on organisms that are absent or uncommon in the US seafood diet, or did not directly relate Hg and Se concentrations to environmental factors to improve our understanding of Hg-Se patterns in natural populations. This study addresses these gaps by examining Hg and Se content in multiple, common marine taxa that are commercially important, and relates Hg and Se content to food web and body size factors that are likely to influence Hg-Se patterns in natural populations
Hg concentrations increase at successively higher trophic levels in the marine food web while Se decreases
Summary
Seafood is an important source of lean protein for humans and piscivorous wildlife. The overall nutritional value of individual marine fish and shellfish species is complex and depends on numerous other nutritional factors and contaminants such as mercury. Seafood is a primary source of both mercury (Hg) and selenium (Se) exposure. Se can protect against Hg bioaccumulation and toxicity [6,7,8], partly due to the formation of metabolically unavailable Hg-Se compounds [9]. This protective effect can depend on the chemical species present and route of exposure [10]. A first step toward this goal is to better understand Hg and Se patterns in common commercial fish and shellfish species, and the factors influencing these patterns
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.