Fatigue driving significantly contributes to global vehicle accidents and fatalities, making driver fatigue level estimation crucial. Electroencephalography (EEG) is a proven reliable predictor of brain states. With Deep Learning (DL) advancements, brain state estimation algorithms have improved significantly. Nonetheless, EEG's multi-domain nature and the intricate spatial-temporal-frequency correlations among EEG channels present challenges in developing precise DL models. In this work, we introduce an innovative Attention-based Cross-Frequency Graph Convolutional Network (ACF-GCN) for estimating drivers' reaction times using EEG signals from theta, alpha, and beta bands. This method utilizes a multi-head attention mechanism to detect long-range dependencies between EEG channels across frequencies. Concurrently, the transformer's encoder module learns node-level feature maps from the attention-score matrix. Subsequently, the Graph Convolutional Network (GCN) integrates this matrix with feature maps to estimate driver reaction time. Our validation on a publicly available dataset shows that ACF-GCN outperforms several state-of-the-art methods. We also explore the brain dynamics within the cross-frequency attention-score matrix, identifying theta and alpha bands as key influencers in fatigue estimating performance. The ACF-GCN method advances brain state estimation and provides insights into the brain dynamics underlying multi-channel EEG signals.
Read full abstract