Abstract
Recognizing human-object interaction (HOI) aims at inferring various relationships between actions and objects. Although great progress in HOI has been made, the long-tail problem and combinatorial explosion problem are still practical challenges. To this end, we formulate HOI as a few-shot task to tackle both challenges and design a novel dynamic generation method to address this task. The proposed approach is called semantic-aware dynamic generation networks (SADG-Nets). Specifically, SADG-Net first assigns semantic-aware task representations for different batches of data, which further generates dynamic parameters. It obtains the features that highlight intercategory discriminability and intracategory commonality adaptively. In addition, we also design a dual semantic-aware encoder module (DSAE-Module), that is, verb-aware and noun-aware branches, to yield both action and object prototypes of HOI for each task space, which generalizes to novel combinations by transferring similarities among interactions. Extensive experimental results on two benchmark datasets, that is, humans interacting with common objects (HICO)-FS and trento universal HOI (TUHOI)-FS, illustrate that our SADG-Net achieves superior performance over state-of-the-art approaches, which proves its impressive effectiveness on few-shot HOI recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.