Abstract

Traffic flow prediction is a crucial component of the Intelligent Transportation System (ITS) with substantial implications for traffic management and daily travel. While short-term traffic forecasting has shown promise, long-term prediction presents unique challenges. The existing short-term approaches fall short in long-term scenarios due to two primary issues: (1) ignoring modeling the interaction relationships among dynamic spatial dependencies, and (2) extracting long-term temporal dependencies without capturing the time information in-depth. To mitigate the above issues, we propose a novel model called TADGCN, a Time-Aware Dynamic Graph Convolution Network, to effectively perform long-term traffic flow prediction. TADGCN captures latent interactions among dynamic spatial dependencies using Attention-Driven Dynamic Adaptive Graph Convolution Network (ADAGCN) modules. The time-aware capability is effectively enhanced using Time-Aware Joint Multi-View Temporal Encoder (TJMTE) modules due to the construction of a time-aware matrix. We conduct diversified experiments on three real-world datasets (England, PEMS04, and PEMS08) to evaluate the performance of our proposed method TADGCN. The results reveal that TADGCN achieves the best accuracy in all cases against 16 competitive state-of-the-art baselines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.