Abstract

Traffic prediction is a critical component of intel-ligent transportation systems. However, highly non-linear and dynamical spatial-temporal correlations propose challenges for traffic prediction, especially long-term prediction. We propose a spatial-temporal channel-attention based graph convolutional network (STCAGCN) to improve the accuracy of both long-term and short-term traffic flow prediction. Firstly we design an attention mechanism to learn complex temporal and spatial correlations. Then we develop the stacked spatial-temporal convo-lution layer to model complex temporal and spatial correlations. Each spatial-temporal convolution layer is composed of a gated time convolution network and a graph convolution network. We develop a gated time convolution network to model non-linear temporal correlations, which process long sequences through stacked dilated convolution. Moreover, the graph convolution network exploits the hidden spatial correlations via learning self-adaptive adjacency matrix. Experiment results on real-world datasets demonstrate that the proposed STCAGCN model obtains improvements over the state-of-the-art, especially for long-term traffic flow prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call