The rapid development of quantum technology has driven the need for high-performance quantum signal processing modules. Balanced homodyne detector (BHD) is one of the most promising options for practical quantum state measurement, providing substantial advantages of cost-effectiveness, no cooling requirement, and system compactness. However, due to the stringent requirements in BHD design, it typically suffers from a relatively small operating bandwidth which limits the overall speed of a quantum system. In this study, we propose comprehensive modelling for the BHD in quantum applications and enhance the performance of BHDs based on our modelling. Specifically, we utilise a photonic chip approach and optimise the electronic design to create the integrated BHD, which significantly boosts the 3 dB bandwidth to 4.75 GHz and achieves a shot-noise-limited bandwidth of 23 GHz. We demonstrate the capability of this setup to generate quantum random numbers at a rate of 240 Gbit s−1, highlighting its potential for ultra-high-speed quantum communication and quantum cryptography applications.