Abstract

The unmanned aerial vehicle (UAV) is prevalent in power inspection. However, due to a limited battery life, turbulent wind, and its motion, it brings some challenges. To address these problems, a reinforcement learning-based energy-saving path-planning algorithm (ESPP-RL) in a turbulent wind environment is proposed. The algorithm dynamically adjusts flight strategies for UAVs based on reinforcement learning to find the most energy-saving flight paths. Thus, the UAV can navigate and overcome real-world constraints in order to save energy. Firstly, an observation processing module is designed to combine battery energy consumption prediction with multi-target path planning. Then, the multi-target path-planning problem is decomposed into iterative, dynamically optimized single-target subproblems, which aim to derive the optimal discrete path solution for energy consumption prediction. Additionally, an adaptive path-planning reward function based on reinforcement learning is designed. Finally, a simulation scenario for a quadcopter UAV is set up in a 3-D turbulent wind environment. Several simulations show that the proposed algorithm can effectively resist the disturbance of turbulent wind and improve convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.