To resolve the issue of the difficultly in effectively balancing the output performance improvement, cost reduction, and efficiency improvement of a medium-voltage modular multilevel converter (MMC), a novel MMC (NMMC) topology based on high- and low-frequency hybrid modulation is proposed in this study. Each arm of the NMMC contains a high-frequency sub-module composed of a heterogeneous cross-connect module (HCCM) and N − 1 low-frequency sub-modules composed of half-bridge converters. The high-frequency bridge arm of the HCCM in this study adopts SiC MOSFET devices, while the commutation bridge arm and low-frequency sub-module of the HCCM adopt Si IGBT devices. For the NMMC topology, this study adopts a high/low-frequency hybrid modulation strategy, which gives full play to the advantages of low switching loss in SiC MOSFET devices and low on-state loss in Si IGBT devices. In addition, a specific capacitor voltage balance strategy is proposed for the HCCM, and the working state of the HCCM is analyzed in detail. Furthermore, the feasibility and effectiveness of the proposed topology, modulation strategy, and voltage balancing strategy are verified by experiments. Finally, the proposed topology is compared with the existing MMC topology in terms of device cost and operating loss, which proves that the proposed topology can better balance the cost and efficiency indicators of the device.