Abstract
As Europe integrates more renewable energy resources, notably offshore wind power, into its super meshed grid, the demand for reliable long-distance High Voltage Direct Current (HVDC) transmission systems has surged. This paper addresses the intricacies of HVDC systems built upon Modular Multi-Level Converters (MMCs), especially concerning the rapid rise of DC fault currents. We propose a novel fault identification and classification for DC transmission lines only by employing Long Short-Term Memory (LSTM) networks integrated with Discrete Wavelet Transform (DWT) for feature extraction. Our LSTM-based algorithm operates effectively under challenging environmental conditions, ensuring high fault resistance detection. A unique three-level relay system with multiple time windows (1 ms, 1.5 ms, and 2 ms) ensures accurate fault detection over large distances. Bayesian Optimization is employed for hyperparameter tuning, streamlining the model’s training process. The study shows that our proposed framework exhibits 100% resilience against external faults and disturbances, achieving an average recognition accuracy rate of 99.04% in diverse testing scenarios. Unlike traditional schemes that rely on multiple manual thresholds, our approach utilizes a single intelligently tuned model to detect faults up to 480 ohms, enhancing the efficiency and robustness of DC grid protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.