Water resources are the key factors affecting the sustainable development of inland river irrigation districts. The establishment of a water resources management model is helpful to realize the coordinated development of water, society, and ecology. Aiming at the contradiction of water use and ecological vulnerability, this study was based on the method of complex adaptive system (CAS) theory, and an agent-based modeling (ABM) method was adopted. Taking Huaitoutala irrigation district as the research object, a water resource management model considering ecological balance was established, with the water resources potentially tapping in the source area as an effective constraint. This study took 2016 as the datum year; the water consumption and comprehensive benefits of four water-saving irrigation scenarios in different characteristic years were simulated and optimized under the conditions of the current water supply and 10% and 15% potential water resources tapping. The results showed that the model considering the behavior and adaptability of the agent can well optimize and simulate the water use in the irrigation district. Under the application of water resources potential tapping and high-efficiency water-saving technology; the water utilization efficiency (WUE) of the irrigation area has been significantly improved. The comprehensive benefits of the irrigation district increased the proportion of ecological water, which was conducive to the sustainable development of the irrigation district and the ecological protection of inland rivers.
Read full abstract