Access to safe, reliable, and equitable water services in urban settings of low- and middle-income countries remains a critical challenge toward achieving Sustainable Development Goal 6.1, but progress has either slowed or stagnated in recent years. A pilot water kiosk network funded by the United States Millennium Challenge Corporation was implemented by the Sierra Leone Millennium Challenge Coordinating Unit into the intermittent piped water distribution network of Freetown, Sierra Leone, as a private-public partnership to improve water service provision for households without reliable piped water connections and to reduce non-revenue water. This study employs the use of high-frequency instrumentation to monitor, model, and assess the functionality of this water kiosk network over 2,947 kiosk-days. Functionality was defined via functionality levels on a daily basis through monitored stored water levels and modeled water withdrawals. The functionality levels across the kiosk network were found to be 34% operational, 30% offline, and 35% empty. Statistically significant (p<0.001) determinants of functionality were found for several predictors across the defined thresholds. Finally, modeling of water supply, water demand and withdrawal capacity, and water storage was conducted to further explain findings and provide additionally externally relevant support for kiosk operations.