High performance liquid chromatography (HPLC) is a key analytical technique that is used in a number of fields. Improving the separation efficiency, stability, and universality of HPLC has been a continuing analytical-chemistry focus. In chromatographic separation, factors such as the composition and ratio of the mobile phase, the type of stationary phase, and the dimensions of the chromatographic column significantly affect the separation efficiency. In addition, the temperatures of the chromatographic column and mobile phase are also important for achieving separation. The column oven is usually used to stably control the column temperature in the HPLC separation system. Indeed, highly accurate temperature control ensures superior separation performance, short analysis times, and repeatability. In this study, we innovatively improved the traditional column oven by combining a variety of temperature-control algorithms to deliver continuous and highly accurate temperature control in the wide 4-90 ℃ range, and by exploring a new chromatographic-method development route. Instead of focusing on the complex hardware system, we optimized the software to achieve highly stable and accurate (±0.1 ℃) temperature control. Temperature-control performance was further improved by optimizing the structure of the thermal insulation and employing reliable and environmentally friendly thermal-insulation materials. Additionally, the thermal conduction of the heat-source device is discussed based on the heat-transfer principle with the aim of improving the performance of the column oven. The improved column oven delivered significantly enhanced chromatographic-separation repeatability and stability thereby reliably guaranteeing the development of highly efficient chromatographic analysis methods.
Read full abstract