Abstract

A rapid on-line solid-phase extraction liquid chromatography high-resolution mass spectrometry (on-line SPE-LC-HRMS) method was developed to analyze 11 ultra-short and short-chain PFAS in surface water. Analytical optimization involved screening 7 chromatographic columns and 5 on-line SPE columns, as well as evaluating SPE loading conditions, filters, sample acidification, chromatographic mobile phases, and SPE loading mobile phases. The optimized method was then applied to 44 river water samples collected in Eastern Canada, including sites near airports with fire-training areas. Among the 11 targeted PFAS, the most frequently detected were trifluoroacetic acid (TFA, 4.6–220 ng/L), perfluorobutanoic acid (PFBA, 0.85–33 ng/L), perfluoropentanoic acid (PFPeA, 1.2–2100 ng/L), trifluoromethane sulfonic acid (TMS, 0.01–4.3 ng/L), and perfluorobutane sulfonic acid (PFBS, 0.07–450 ng/L). Levels of C3-C5 perfluoroalkyl carboxylic acids (PFCAs), C2-C4 perfluoroalkyl sulfonates (PFSAs) and n:3 polyfluoroalkyl acids (n = 2,3; n:3 acids) were significantly higher in water bodies near fire-training area sites compared with rivers in urban areas. In contrast, TFA, TMS, and 1:3 acid were not significantly elevated, likely reflecting atmospheric deposition or other diffuse sources for these compounds. Nontarget and suspect screening analysis revealed an abundance of other ultra-short and short-chain PFAS in AFFF-impacted water bodies. Perfluoroalkyl sulfonamides (FASA, C2, C3, and C5), perfluoroalkyl sulfonamide propanoic acids (FASA-PrA, C1-C2) and n:3 acids (n = 1, 4, and 5) were detected for the first time in environmental surface waters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.