Cobalt ferrites are widely used for permanent magnets, magnetic fluids, microwave devices, high density information storage and environmental technologies. The properties of nanosized magnetic materials strongly depend on the shape, size, and phase composition of the particles. The great interest of researchers in nanosized materials in recent years is associated with the possibility of changing the properties of magnetic materials by controlling the particle size and distribution of cations over sublattices in ferrite [1].Nanoparticles of doped cobalt ferrite showed improved physicochemical characteristics compared to individual components due to the synergistic effect of the mutual presence of cations. Currently, various technologies for producing ferrites are used. However, to obtain a single-phase product, calcination of the precursors at a temperature of 1300-1500 0C is required, which causes agglomeration and sintering of the product. The use of modern methods of electrochemical synthesis is the basis for obtaining ferrites from transition materials with a given set of properties. A characteristic recent trend is the development of new technologies and compositions for the production of precisely nanodispersed ferrites [2].The purpose of this work is to study the possibility of using contact low-temperature nonequilibrium plasma for the synthesis of cobalt ferrites doped with La3+, Nd3+, I3+ cations, to establish a relationship between the cationic composition of ferrites and its phase composition, magnetic and structural characteristics.Ferrites were synthesized in the form of nanoparticles using contact nonequilibrium low temperature plasma in an electrochemical reactor. The crystalline microstructure of the samples was revealed by X-ray diffraction and X-ray phase methods. The magnetic characteristics were determined from hysteresis loops. The EPR spectra were obtained on a Radiopan SE/X-2543 radiospectrometer. To characterize the EPR signals, the intensity and width of the signal, and the resonant frequency were used. The visualization of the dependences of the technological characteristics of La3+-Nd3+-I3+ ferrites on the cationic composition was carried out by the simplex method using the STATISTICA 12 program.It has been established that the nature of the rare-earth metal cation in cobalt ferrite directly determines the magnetic and photocatalytic properties of spinel ferrites. The effect of the mutual influence of the content of cations on the saturation magnetization and coercive force is determined. The most influencing factor is the content of neodymium cations. Low values of the coercive force for Mn-Zn and Co-Zn ferrites and high values for the entire range of Co-Mn ferrites are established. An increase in the content of cobalt cations leads to an increase in the saturation magnetization value of Co-Mn ferrites. The EPR spectra show that the values of the resonance field and linewidth in the EPR spectrum correlate with the value of magnetic saturation.Simultaneous substitution of Nd3+ and La3+ in CoFe2O4 nanoparticles affected the structure, magnetic and photocatalytic properties. Structural parameters were investigated and calculated using X-ray diffraction studies. The magnetization analyzes were carried out at room temperature. Various magnetic parameters have been obtained and discussed, including remanence (Mr), coercive force (Hc), saturation magnetization (Ms), squareness ratio (SQR=Mr/Ms) and magnetic moment (nB). An increase in Mr, Ms, Hc and nB was found at lower concentrations of Nd3+ and La3+. An increase in the content of Nd3+ cations leads to a significant increase in the coercive force. The analysis of photocatalytic activity in the reaction of isolation of furacilin showed the best results (destruction rate 98%, time 40 minutes) for the ternary composition.References Caldeira, Luis Eduardo, et al. "Correlation of synthesis parameters to the structural and magnetic properties of spinel cobalt ferrites (CoFe2O4)–an experimental and statistical study." Journal of Magnetism and Magnetic Materials550 (2022): 169128.Lu, Yuzheng, et al. "Effect of Gd and Co contents on the microstructural, magneto-optical and electrical characteristics of cobalt ferrite (CoFe2O4) nanoparticles." Ceramics International2 (2022): 2782-2792.
Read full abstract