Abstract

Manganese–zinc (Mn-Zn) ferrites are the primary choice for high-frequency and high-power magnetic components. Optimum material selection is essential for high-performance magnetic component design. However, the manufacturers’ material specifications usually do not provide sufficient information to optimize the design. Complex permeability and permittivity, as well as specific power loss, are typically provided as one value, regardless of the core shape and size. Magnetic component design based on these incomplete specifications can result in a poorly optimized component. This article proposes methods to determine the properties of Mn-Zn ferrite at high frequencies, with tests up to 20 MHz. This article also presents experimental complex permeability and permittivity frequency characteristics for four ferrite materials: 3E10, 3F36, 3E65, and 3C95. The resulting fitted parameters for the equivalent-circuit model can be used in any design algorithm or simulation tool. The impacts of physical size, temperature and force on complex permeability and permittivity are also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.