We present an upgraded version of the Photon Counting Toolkit (PcTK), a freely available by request MATLAB tool for the simulation of semiconductor-based photon counting detectors (PCD), which has been extended and validated to account for gallium arsenide (GaAs)-based PCD(s). The modified PcTK version was validated by performing simulations and acquiring experimental data for three different cases. The LAMBDA 60 K module planar detector (X-Spectrum GmbH, Germany) based on the Medipix3 ASIC technology was used in all cases. This detector has a 500-μm thick GaAs sensor and a 256 × 256-pixel array with 55 μm pixel size. The first validation was a comparison between simulated and measured spectra from a 109Cd radionuclide source. In the second validation study, experimental measurements and simulations of mammography spectra were generated to observe the performance of the GaAs version of the PcTK with polychromatic radiation used in conventional x-ray imaging systems. The third validation study used single event analysis to validate the spatio-energetic model of the extended PcTK version. Overall, the software provided a good agreement between simulated and experimental data, validating the accuracy of the GaAs model. The software could be an attractive tool for accurate simulation of breast imaging modalities relying on photon counting detectors and therefore could assist in their characterization and optimization.
Read full abstract