This paper is concerned with the global Mittag-Leffler synchronization schemes for the Caputo type fractional-order BAM neural networks with multiple time-varying delays and impulsive effects. Based on the delayed-feedback control strategy and Lyapunov functional approach, the sufficient conditions are established to ensure the global Mittag-Leffler synchronization, which are described as the algebraic inequalities associated with the network parameters. The control gain constants can be searched in a wider range following the proposed synchronization conditions. The obtained results are more general and less conservative. A numerical example is also presented to illustrate the feasibility and effectiveness of the theoretical results based on the modified predictor–corrector algorithm.
Read full abstract