Abstract

This paper is concerned with the global Mittag-Leffler synchronization schemes for the Caputo type fractional-order BAM neural networks with multiple time-varying delays and impulsive effects. Based on the delayed-feedback control strategy and Lyapunov functional approach, the sufficient conditions are established to ensure the global Mittag-Leffler synchronization, which are described as the algebraic inequalities associated with the network parameters. The control gain constants can be searched in a wider range following the proposed synchronization conditions. The obtained results are more general and less conservative. A numerical example is also presented to illustrate the feasibility and effectiveness of the theoretical results based on the modified predictor–corrector algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.