A commercial bipolar junction transistor (2 N 2219 A, npn), irradiated with 120 MeV Si9+ ions with a fluence of the order of 1012 ions cm−2, is studied for radiation-induced gain degradation and deep level defects. I–V measurements are made to study the gain degradation as a function of ion fluence. Properties such as activation energy, trap concentration and capture cross section of deep levels are studied by deep level transient spectroscopy (DLTS). Minority carrier trap energy levels with energies ranging from EC − 0.160 eV to EC − 0.581 eV are observed in the base-collector junction of the transistor. Majority carrier trap levels are also observed with energies ranging from EV + 0.182 eV to EV + 0.401 eV. The identification of the defect type is made on the basis of its finger prints such as activation energy, annealing temperature and capture cross section by comparing with those reported in the literature. New energy levels for the defects A-center, di-vacancy and Si-interstitial are also observed. The irradiated transistor is subjected to isothermal and isochronal annealing. The defects are seen to anneal above 250 °C. The defects generated in the base region of the transistor by displacement damage appear to be responsible for transistor gain degradation.
Read full abstract