Recent research suggests that organic matter sequestered in lake sediment comprises a larger component of the global carbon cycle than once thought, yet little is known about carbon storage in mountain lakes. Here, we used a set of sediment cores collected from lakes in the Uinta Mountains (Utah, USA) to inform a series of calculations and extrapolations leading to estimates of carbon accumulation rates and total lacustrine carbon storage in this mountain range. Holocene rates of carbon accumulation in Uinta lakes are between 0.1 and 20.5 g/m2/yr, with an average of 5.4 g/m2/yr. These rates are similar to those reported for lakes in Greenland and Finland and are substantially lower than estimates for lakes in Alberta and Minnesota. The carbon content of modern sediments of seven lakes is notably elevated above long-term Holocene values, suggesting recent changes in productivity. The lakes of the Uintas have accumulated from 6 to 10×105 Mt of carbon over the Holocene. This is roughly equivalent to the annual carbon emissions from Salt Lake City, Utah. Based on their long-term Holocene rates, lakes in the Uintas annually sequester an amount of carbon equivalent to the emissions of <20 average Americans.
Read full abstract