Abstract

Fecal indicator bacteria such as Escherichia coli have been reported to persist and potentially grow in a wide variety of secondary habitats, such as water, beach sand, sediment, periphyton and some algae. However, little is known about their association with submerged macrophytes and how this may influence water quality. In this study, we examined the association of E. coli and potential bacterial pathogens with Eurasian watermilfoil (EWM), an invasive, submerged, macrophyte that has spread across thousands of lakes in North America. EWM samples were collected from 10 lakes in Minnesota, once a month, for six consecutive months from early summer to late fall. Microbiota associated with EWM were examined using membrane filtration, quantitative PCR targeting various bacterial pathogens and host-associated marker genes, and high-throughput DNA sequencing. E. coli densities were generally elevated on EWM samples, and peaked during warmer months. Moreover, our results showed that EWM could serve as a temporal source for transmission of microbiota to the water column. Several potential pathogenic groups, including Aeromonas, Enterobacteriaceae, and Clostridium were present in significantly greater relative abundance on EWM than in water, and waterfowl was predicted to be the major source of fecal contamination. These findings have water quality implications with respect to the potential for submerged macrophytes to harbor and disperse E. coli and other bacterial pathogens in a large number of waterbodies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.