Abstract

Common loons (Gavia immer) are at risk of elevated dietary mercury (Hg) exposure in portions of their breeding range. To assess the level of risk among loons in Minnesota (USA), we investigated loon blood Hg concentrations in breeding lakes across Minnesota. Loon blood Hg concentrations were regressed on predicted Hg concentrations in standardized 12-cm whole-organism yellow perch (Perca flavescens), based on fish Hg records from Minnesota lakes, using the US Geological Survey National Descriptive Model for Mercury in Fish. A linear model, incorporating common loon sex, age, body mass, and log-transformed standardized perch Hg concentration representative of each study lake, was associated with 83% of the variability in observed common loon blood Hg concentrations. Loon blood Hg concentration was positively related to standardized perch Hg concentrations; juvenile loons had lower blood Hg concentrations than adult females, and blood Hg concentrations of juveniles increased with body mass. Blood Hg concentrations of all adult common loons and associated standardized prey Hg for all loon capture lakes included in the study were well below proposed thresholds for adverse effects on loon behavior, physiology, survival, and reproductive success. The fish Hg modeling approach provided insights into spatial patterns of dietary Hg exposure risk to common loons across Minnesota. We also determined that loon blood selenium (Se) concentrations were positively correlated with Hg concentration. Average common loon blood Se concentrations exceeded the published provisional threshold. Environ Toxicol Chem 2019;38:524-532. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call