This paper reviews recent research conducted at the University of Toronto on the development of CMOS transceivers aimed at operation in the 90-170-GHz range. Unique nanoscale CMOS issues related to millimeter-wave circuit design in the 65-nm node and beyond are addressed with an emphasis on transistor and top-level layout issues, low-voltage circuit topologies, and design flow. A Doppler transceiver and two receivers fabricated in a 65-nm GPLP CMOS technology are described, along with a single pole, double throw antenna switch with better than 5-dB insertion loss and 25-dB isolation in the entire 110-170-GHz band. The first receiver has an IQ architecture with a fundamental frequency voltage-controlled oscillator, and is intended for wideband passive imaging applications at 100 GHz. The measured noise figure and downconversion gain are 7-8 and 10.5 dB, respectively, while the 3-dB bandwidth extends from 85 to 100 GHz. The second receiver has double-sideband architecture, operates in the 135-145-GHz range (the highest for CMOS receivers), and features an 8-dB gain LNA, a double-balanced Gilbert cell mixer, and a dipole antenna. The 90-94-GHz Doppler transceiver, the highest frequency reported to date in CMOS, is intended for the remote monitoring of respiratory functions. A Doppler shift of 30 Hz, produced by a slow-moving (4.8 cm/s) target located at a distance of 1 m, was measured with a transmitter output power of approximately + 2 dBm and a phase noise of -90 dBc/Hz at 1 MHz offset. The range correlation effect is demonstrated for the first time in CMOS by measuring the phase noise of the received baseband signal at 10-Hz offset, clearly indicating that 1/ <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</i> noise has been canceled and it does not pose a problem in short-range applications, where neither a phase-locked loop nor a frequency divider are needed.
Read full abstract