Abstract
In this paper, a double heterojunction bipolar transistor (DHBT) process has been developed in transferred-substrate (TS) technology to optimize high-frequency performance. It provides an aligned lithographic access to frontside and backside of the device to eliminate dominant transistor parasitics. The transistors of 0.8 times 5-mum <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> emitter mesa feature f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</sub> = 410 GHz and f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> = 480 GHz at a BV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ceo</sub> = 5.5 V. Parallel to the device setup, a multilevel metallization scheme is established. It serves as construction kit for 3-D configurations of active and passive elements. High yield of the TS DHBTs, consistent large-signal modeling, and accurate simulation of complex passive elements have been demonstrated and have proved the availability of the technology for advanced millimeter-wave circuit design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.