As an integrable micro-optical device, micro lens arrays (MLAs) have significant applications in modern optical imaging, new energy technology, and advanced displays. In order to reduce the impact of laser modification on wet etching, we propose a technique of femtosecond laser penetration-induced modification-assisted wet etching (FLIPM-WE), which avoids the influence of previous modification layers on subsequent laser pulses and effectively improves the controllability of lens array preparation. We conducted a detailed study on the effects of the laser single pulse energy, pulse number, and hydrofluoric acid etching duration on the morphology of micro lenses and obtained the optimal process parameters. Ultimately, two types of fused silica micro lens arrays with different focal lengths but the same numerical aperture (NA = 0.458) were fabricated using the FLPIM-WE technology. Both arrays exhibited excellent geometric consistency and surface quality (Ra~30 nm). Moreover, they achieved clear imaging at various magnifications with an adjustment range of 1.3×~3.0×. This provides potential technical support for special micro-optical systems.
Read full abstract