Abstract
Compound eyes are high-performing natural optical perception systems with compact configurations, generating extensive research interest. Existing compound eye systems are often combinations of simple uniform microlens arrays; there are still challenges in making more ommatidia on the compound eye surface to focus to the same plane. Here, a biomimetic gradient compound eye is presented by artificially mimicking dragonflies. The multiple replication process efficiently endows compound eyes with the gradient characteristics of dragonfly compound eyes. Experimental results show that the manufactured compound eye allows multifocus imaging by virtue of the gradient ommatidium array arranged closely in a honeycomb pattern while ensuring excellent optical properties and compact configurations. Thousands of ommatidia showing a gradient trend at the millimeter scale while remaining relatively uniform at the micron scale have gradient focal lengths ranging from 260 to 450 μm. This gradient compound eye allows more ommatidia to focus on the same plane than traditional uniform compound eyes, which have experimentally been shown to capture more than 1100 in-plane clear images simultaneously, promising potential applications in micro-optical devices, optical imaging, and biochemical sensing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have