Microalgae have been remarkably taken into account due to their wide applications in the biopharmaceutical, nutraceutical and bio-energy fields. However, contamination of microalgae with bacteria still appears to be a concern, adversely impacting products' quality and process efficiency. Microalgae decontamination with conventional techniques is usually expensive and time-consuming. Moreover, damage to microalgae cells is highly possible. Asymmetric contraction-expansion microchannels (Asym-CEMCs) are promising passive microfluidic devices that can overcome conventional techniques' drawbacks with their standing-out features. However, the flexibility of Asym-CEMCs performance arising from their various tunable geometrical parameters results in the fact that their performance for separating a target particle cannot be predicted without an investigation. In this work, for the first time, Asym-CEMCs were numerically studied for the removal of a very conventional bacteria, B. subtilis (1μm), from one of the most popular microalgae, C. vulgaris (5.7μm). The influences of the microchannel aspect ratio, length and width ratios of the expansion-to-contraction zones, and the total flow rate on the separation resolution and focusing width of the particles were investigated by a 3D numerical model. The aspect ratio had the strongest influence on the Asym-CEMC performance, however, the length ratio had no considerable effect on the results. A decrease in the aspect ratio augmented the shear-induced lift force and Dean drag force, leading to a significant separation resolution improvement. Microalgae decontamination was also enhanced by an increase in the total flow rate and expansion-to-contraction width ratio. Finally, a locally optimized Asym-CEMC with an aspect ratio of one and expansion-to-contraction width and length ratios of 4.7 and 2.07, respectively, was proposed, leading to complete microalgae decontamination with a high normalized separation resolution of 0.6. In a word, Asym-CEMCs with tailored dimensions are promising for successfully decontaminating microalgae from bacteria.
Read full abstract