Abstract

Microalgae have been remarkably taken into account due to their wide applications in the biopharmaceutical, nutraceutical and bio-energy fields. However, contamination of microalgae with bacteria still appears to be a concern, adversely impacting products’ quality and process efficiency. Microalgae decontamination with conventional techniques is usually expensive and time-consuming. Moreover, damage to microalgae cells is highly possible. Asymmetric contraction-expansion microchannels (Asym-CEMCs) are promising passive microfluidic devices that can overcome conventional techniques' drawbacks with their standing-out features. However, the flexibility of Asym-CEMCs performance arising from their various tunable geometrical parameters results in the fact that their performance for separating a target particle cannot be predicted without an investigation. In this work, for the first time, Asym-CEMCs were numerically studied for the removal of a very conventional bacteria, B. subtilis (1 μm), from one of the most popular microalgae, C. vulgaris (5.7 μm). The influences of the microchannel aspect ratio, length and width ratios of the expansion-to-contraction zones, and the total flow rate on the separation resolution and focusing width of the particles were investigated by a 3D numerical model. The aspect ratio had the strongest influence on the Asym-CEMC performance, however, the length ratio had no considerable effect on the results. A decrease in the aspect ratio augmented the shear-induced lift force and Dean drag force, leading to a significant separation resolution improvement. Microalgae decontamination was also enhanced by an increase in the total flow rate and expansion-to-contraction width ratio. Finally, a locally optimized Asym-CEMC with an aspect ratio of one and expansion-to-contraction width and length ratios of 4.7 and 2.07, respectively, was proposed, leading to complete microalgae decontamination with a high normalized separation resolution of 0.6. In a word, Asym-CEMCs with tailored dimensions are promising for successfully decontaminating microalgae from bacteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.