In order to examine the effects of the fluid type as the electrolyte solvent on the efficiency of electrokinetic energy conversion, a comparative numerical study among three different fluid types of a transient electrokinetic flow through a single circular finite length microchannel has been conducted. The system was initially at an equilibrium non-flow state, and a step change in flow was applied and the calculation proceeding until steady state was achieved. The analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale and diffusion time as characteristic time scale. The fluid types considered were shear thinning, Newtonian, and shear thickening, and a power law modeled them with the scaled flow behavior index having values of 0.2, 1.0, and 1.8. In order to isolate the electrokinetic effects of the different relationships between the shear strain rate and shear stress, the flow consistency index was adjusted so that in all the cases the flow rate and total pressure drop matched that of water at 25 °C. All other fluid and interfacial properties were the same for all cases. The key observational difference between the various fluid types was that their different axial velocity profile acted on essential the same free charge density profiles. Consequently, the convection current density (i.e., the radial distribution of charge being advected along the channel) was strongly affected by the fluid type. Integration of this quantity to calculate the convection current showed that for the particular fluid properties chosen the shear thinning fluid was 20 % higher than the Newtonian fluid, while the shear thickening fluid was only 4 % lower than the Newtonian fluid. Combined with the effects, these different currents have on the streaming potential, the shear thinning fluid was 50 % more effective in converting flow work to electrical work than the Newtonian fluid, while the shear thickening fluid was only 16 % lower than the Newtonian fluid.