Abstract

We investigate a driven, one-dimensional system of colloidal particles in a periodically corrugated narrow channel subject to a time-delayed feedback control. Our goal is to identify conditions under which the control induces oscillatory, time-periodic states. The investigations are based on the Fokker-Planck equation involving the density distribution of the system. First, by using the numerical continuation technique, we determine the linear stability of a stationary density. Second, the nonlinear regimes are analyzed by studying numerically the temporal evolution of the first moment of the density distribution. In this way we construct a bifurcation diagram revealing the nature of the instability. Apart from the case of a system with periodic boundary conditions, we also consider a microchannel of finite length. Finally, we study the influence of (repulsive) particle interactions based on dynamical density functional theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.