Abstract

We present a coupled lattice Boltzmann method (LBM) to solve a set of model equations for electrokinetic flows in micro-/nano-channels. The model consists of the Poisson equation for the electrical potential, the Nernst–Planck equation for the ion concentration, and the Navier–Stokes equation for the flows of the electrolyte solution. In the proposed LBM, the electrochemical migration and the convection of the electrolyte solution contributing to the ion flux are incorporated into the collision operator, which maintains the locality of the algorithm inherent to the original LBM. Furthermore, the Neumann-type boundary condition at the solid/liquid interface is then correctly imposed. In order to validate the present LBM, we consider an electro-osmotic flow in a slit between two charged infinite parallel plates, and the results of LBM computation are compared to the analytical solutions. Good agreement is obtained in the parameter range considered herein, including the case in which the nonlinearity of the Poisson equation due to the large potential variation manifests itself. We also apply the method to a two-dimensional problem of a finite-length microchannel with an entry and an exit. The steady state, as well as the transient behavior, of the electro-osmotic flow induced in the microchannel is investigated. It is shown that, although no external pressure difference is imposed, the presence of the entry and exit results in the occurrence of the local pressure gradient that causes a flow resistance reducing the magnitude of the electro-osmotic flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call