Microgrids are considered a practical solution to revolutionize power systems due to their ability to island and sustain the penetration of renewables. Most existing studies have focused on the optimal management of microgrids with a fixed configuration. This restricts the application of developed algorithms to other configurations without major modifications. The objective of this study is to design a rule-based modular energy management system (EMS) for microgrids that can dynamically adapt to the microgrid configuration. To realize this framework, first, each component is modeled as a separate entity with its constraints and bounds for variables. A wide range of components such as battery energy storage systems (BESSs), electric vehicles (EVs), solar photovoltaic (PV), microturbines (MTs), and different priority loads are modeled as modules. Then, a rule-based system is designed to analyze the impact of the presence/absence of one module on the others and update constraints. For example, load shedding and PV curtailment can be permitted if the grid module is not included. The constraints of microgrid components present in any given configuration are communicated to the EMS, and it optimizes the operation of the available components. The configuration of microgrids could be as simple as flexible loads operating in grid-connected mode or as complex as a hybrid microgrid with AC and DC buses with a diverse range of equipment on each side. To facilitate the realization of diverse configurations, a hybrid AC/DC microgrid is considered where the utility grid and interlinking converter (ILC) are also modeled as separate modules. The proposed method is used to test performance in both grid-connected and islanded modes by simulating four typical configurations in each case. Simulation results have shown that the proposed rule-based modular method can optimize the operation of a wide range of microgrid configurations.
Read full abstract