The recent multi-analytical study carried out on the Van Eyck’s Ghent Altarpiece showed the simultaneous presence of several kinds of metal carboxylates in oil-rich glaze layers. This outcome raised the question whether these carboxylates had already formed during the preparation of the oil binder by the artists. In the case of early-stage formation, they may have had an impact on the drying rate of the resulting oil, as well as on its handling properties. This hypothesis was investigated using a model system of in-house-prepared linseed oil containing incremental concentrations (2–5–10 wt.%) of relevant metal carboxylates (i.e. Ca-, Zn-, Cu-, and Pb oleates and stearates). This paper describes the influence of these type of molecules on the drying rate of linseed oil and, to an extent, on its viscosity. The drying time of the linseed oil, to which one or more metal carboxylates were added, was measured with a drying recorder while the viscosity was assessed with a rheometer. When introduced together, some of these metal carboxylates act in synergy to shorten the drying time with respect to the situation when the same metal carboxylates were added separately to linseed oil. Mixtures of Ca- and Zn-oleates proved to have a larger effect than other binary combinations. Addition of two metal oleates (combination of Ca/Zn/Cu/Pb) reduced the drying time even more. On the other hand, specific combinations of three metal stearates and/or oleates also demonstrated a significant synergistic effect towards increasing the viscosity of the binder. Especially combinations of Ca/Zn/Cu and Ca/Zn/Pb stearates and oleates gave rise to the highest level of linseed oil viscosity increase, when compared to the situation in which the same metal carboxylates were added separately.