Abstract

Abstract This research focuses on recycling rubber tire waste through pyrolysis to produce recovered carbon black (rCB). The rCB is combined with recycled low-density polyethylene (rLDPE), calcium carbonate (CaCO3), fatty acid, metallic stearate, and polyethylene (PE) wax to create an rCB masterbatch for household packaging. Surface modification of CaCO3 particles using stearic acid improves the compatibility with LDPE. The study investigates mechanical properties, morphology, melt flow index (MFI), X-ray diffraction, and thermogravimetric analysis in three systems: uncoated, coated, and a hybrid combination of coated and uncoated CaCO3 in LDPE/rCB masterbatch composites. The coated system demonstrates higher mechanical properties and improved compatibility between CaCO3 and LDPE. All three systems exhibit enhanced thermal stability and MFI compared to virgin LDPE, with the coated system showing the most significant improvement. The study showcases the potential of LDPE/rCB masterbatch composites for household packaging, with the coated system displaying the optimum performance across various characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.