Oxidative stress, characterized by excessive production of reactive oxygen species (ROS), is a critical factor in the progression of inflammatory bowel disease (IBD) and presents a potential therapeutic target. Anti-oxidant therapy, aimed at mitigating excessive ROS, is emerging as a cornerstone in IBD treatment. Nanomaterials with robust anti-oxidant properties offer promise by inhibiting inflammation through ROS scavenging, enhancing IBD therapeutic efficacy. Recent focus in ROS scavenging has centered on metal oxide nanoenzymes and polyphenol-based nanomaterials. The primary challenges are the catalytic efficiency of nanoenzymes and the functional integration of these nanomaterials with therapeutic agents. Polyphenols, natural plant extracts, have garnered significant interest due to their potent anti-oxidant properties and unique catechol groups that interact with biomolecules such as proteins and nucleic acids. The strong metal ion chelating ability of catechols enriches the structure and functionality of nanomaterials, improving the physicochemical properties of nanocarriers and enabling innovative designs of multifunctional drug delivery systems (DDSs). Research on polyphenol-based DDSs has expanded to include agents like epigallocatechin gallate, curcumin, resveratrol, tannic acid, and polydopamine. These nanocarriers and anti-oxidants, which incorporate polyphenols, have demonstrated potential anti-oxidant properties in novel DDSs as therapeutic agents to reduce inflammation and as essential components of drug carriers. This review focuses on the design and application of natural polyphenol-based anti-oxidant nanomaterials for IBD treatment, offering a comprehensive discussion on the use of polyphenols in DDSs and the potential challenges posed by their diverse roles in innovative drug delivery strategies, including their impact on the physical and chemical properties of DDSs.
Read full abstract