ConspectusThe ring currents of aromatic and antiaromatic molecules are remarkable emergent phenomena. A ring current is a quantum-mechanical feature of the whole system, and its existence cannot be inferred from the properties of the individual components of the ring. Hückel's rule states that when an aromatic molecule with a circuit of [4n + 2] π electrons is placed in a magnetic field, the field induces a ring current that creates a magnetic field opposing the external field inside the ring. In contrast, antiaromatic rings with 4n π electrons exhibit ring currents in the opposite direction. This rule bears the name of Erich Hückel, and it grew from his molecular orbital theory, but modern formulations of Hückel's rule incorporate contributions from others, particularly William Doering and Ronald Breslow. It is often assumed that aromaticity is restricted to small molecular rings with up to about 22 π electrons. This Account outlines the discovery of global ring currents in large macrocycles with circuits of up to 162 π electrons. The largest aromatic rings yet investigated are cyclic porphyrin oligomers, which exhibit global ring currents after oxidation, reduction or optical excitation but not in the neutral ground state. The global aromaticity in these porphyrin nanorings leads to experimentally measurable aromatic stabilization energies in addition to magnetic effects that can be studied by NMR spectroscopy. Wheel-like templates can be bound inside these nanorings, providing excellent control over the molecular geometry and allowing the magnetic shielding to be probed inside the nanoring. The ring currents in these systems are well-reproduced by density functional theory (DFT), although the choice of DFT functional often turns out to be critical. Here we review recent contributions to this field and present a simple method for determining the ring current susceptibility (in nA/T) in any aromatic or antiaromatic ring from experimental NMR data by classical Biot-Savart calculations. We use this method to quantify the ring currents in a variety of aromatic rings. This survey confirms that Hückel's rule reliably predicts the direction of the ring current, and it reveals that the ring current susceptibility is surprisingly insensitive to the size of the ring. The investigation of aromaticity in even larger molecular rings is interesting because ring currents are also observed when mesoscopic metal rings are placed in a magnetic field at low temperatures. The striking similarity between the ring currents in molecules and mesoscopic metal rings arises because the effects have a common origin: a field-dependent phase shift in the electronic wave function. The main difference is that the magnetic flux through mesoscopic rings is much greater because of their larger areas, so their persistent currents are nonlinear and oscillatory with the applied field, whereas the flux through aromatic molecules is so small that their response is approximately linear in the applied field. We discuss how nonlinearity is expected to emerge in large molecular nanorings at high magnetic fields. The insights from this work are fundamentally important for understanding aromaticity and for bridging the gap between chemistry and mesoscopic physics, potentially leading to new functions in molecular electronics.
Read full abstract