Abstract

We study the model of a noninteracting spinless electron gas confined to the two-dimensional localized surface of a cone in the presence of external magnetic fields. The localized region is characterized by an annular radial potential. We write the Schr\"{o}dinger equation and use the thin-layer quantization procedure to calculate the wavefunctions and the energy spectrum. In such a procedure, it arises a geometry induced potential, which depends on both the mean and the Gaussian curvatures. Nevertheless, since we consider a ring with a mesoscopic size, the effects of the Gaussian curvature on the energy spectrum are negligible. The magnetization and the persistent current are analyzed. In the former, we observed the Aharonov-Bohm (AB) and de Haas-van Alphen (dHvA) types oscillations. In the latter, it is observed only the AB type oscillations. In both cases, the curvature increases the amplitude of the oscillations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call