Abstract
The flux quantization is a key indication of electron pairing in superconductors. For example, the well-known h/2e flux quantization is considered strong evidence for the existence of charge-2e, two-electron Cooper pairs. Here we report evidence for multicharge flux quantization in mesoscopic ring devices fabricated using the transition-metal kagome superconductor CsV3Sb5. We perform systematic magnetotransport measurements and observe unprecedented quantization of magnetic flux in units of h/4e and h/6e in magnetoresistance oscillations. Specifically, at low temperatures, magnetoresistance oscillations with period h/2e are detected, as expected from the flux quantization for charge-2e superconductivity. We find that the h/2e oscillations are suppressed and replaced by resistance oscillations with h/4e periodicity when the temperature is increased. Increasing the temperature further suppresses the h/4e oscillations, and robust resistance oscillations with h/6e periodicity emerge as evidence for charge-6e flux quantization. Our observations provide the first experimental evidence for the existence of multicharge flux quanta and emergent quantum matter exhibiting higher-charge superconductivity in the strongly fluctuating region above the charge-2e Cooper pair condensate, revealing new insights into the intertwined and vestigial electronic order in kagome superconductors. Published by the American Physical Society 2024
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have