Abstract

A theoretical model of transmission and reflection of an electron with spin is proposed for a mesoscopic ring with rotating localized magnetic moment. This model may be realized in a pair of domain walls connecting two ferromagnetic domains with opposite magnetization. If the localized magnetic moment and the traveling spin is ferromagnetically coupled and if the localized moment rotates with opposite chirality in the double-path, our system is formulated in the model of an emergent spin-orbit interaction in a ring. The scattering problem for the transmission spectrum of the traveling spin is solved both in a single path and a double path model. In the double path, the quantum-path interference changes dramatically the transmission spectrum due to the effect of the Berry's phase. Specifically, the spin-flip transmission and reflection are both strictly forbidden.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.