Chemical cross-linking is commonly used to prevent slippage between molecular chains in shape memory polymers (SMPs) to improve shape return. However, chemical cross-linking makes SMPs less stretchable, and the disordered network structure reduces the ability of SMPs to maintain temporary shapes. To obtain ultra-high stretchability and better shape memory properties, a cyclic polymer (C-PTHF-OH) was introduced into the shape memory polyurethane (PUCX) network, and the PUCX network topology was controlled by adjusting the content of C-PTHF-OH molecular rings. PUC0.5 exhibited the highest shape fixation (99.9 %) and shape recovery (98.4 %), and the higher the content of the C-PTHF-OH molecular ring, the higher the elongation at break of the prepared PUCX, with a slight decrease in tensile strength. Compared to PUC0 (2000 % elongation at break and 32 MPa tensile strength) prepared from the linear polymer, PUC0.5 showed up to 2150 % elongation at break and 31 MPa tensile strength. This study provides new ideas for the design of network structures for SMPs and is a new paradigm introduced into the SMPs network by cyclic topological polymers.
Read full abstract