AbstractA two‐dimensional (2D) axisymmetric numerical model, based on the finite element method, for glass containers forming processes is presented. Glass forming processes involve coupled thermomechanical phenomena in which heat transfer and viscous flow are dependent, as glass viscosity is highly dependent on temperature. During the overall process glass changes from a molten state to a solid state. Therefore, adequate cooling conditions must be set appropriately. From the numerical point of view, the modeling must be robust so as to adjust to the different sequenced stages. Remeshing techniques requiring adequate data transfer, as well as, different thermal and mechanical contact conditions between glass and molds must be taken into account. Also, effective treatment of the incompressible conditions associated with glass flow must be dealt with. The aim is to set the better process parameters so that the final containers have the required geometrical shape and thickness distribution. A numerical model was conducted addressing all these issues and a thickness distribution comparison with real industrial products was performed.