Abstract In this paper, a new objective typhoon positioning algorithm was proposed. The algorithm uses L1 12-channel far-infrared data of the FY-4A geostationary meteorological satellite for objective positioning, verified against best path data provided by the Tropical Cyclone Data Center of the China Meteorological Administration (CMA). By calculating the tangential and radial perturbation values of infrared brightness temperature images, the perturbation factor can be obtained. By adopting the position of the maximum perturbation factor as the center of a circle and considering a radius of no more than 20 km, the position of the minimum perturbation factor was determined; this value represents the central position of the typhoon. Tropical cyclones in 2019 and 2020 were selected for objective positioning, and the objective positioning results were verified against the corresponding time in the best path dataset. The results included centralized verification results for 29 typhoons and optimal path data in 2019. The maximum average error reached 54.67 km, with an annual average typhoon positioning error of 16.15 km. The centralization verification results for 23 typhoons and optimal path data in 2020 indicated a minimum average error of 12.71 km, a maximum average error of 18.56 km, and an annual average typhoon positioning error of 14.82 km. The positioning results for these two years suggest that the longitude obtained with the perturbation factor positioning method is satisfactory, exhibiting an error of less than 20 km. Significance Statement The purpose of this study is to help researchers make scientific discoveries and help the development of typhoon center location technology in the future. This is important because accurate positioning of typhoon center can provide effective help for typhoon path prediction and typhoon intensity determination.
Read full abstract