Abstract

In the present study, an approximation is applied to study the sound speed in liquids as a function of pressure at different temperatures. The relation obtained is applied in the case of biofuel component liquids. The calculated results for each liquid were found to be in good agreement with the experimental results throughout the range of pressure and temperature. The maximum percentage error and average percentage error are not more than 5.2 and 1.9, respectively, in the entire range of pressure and temperature for all liquids. Furthermore, the internal pressure and nonlinear Bayer's parameters are also computed as a function of temperature at one atmosphere from sound speed for the first time in biofuel component liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.