A simple and efficient protocol has been developed for in vitro regeneration of M. acuminata ssp. burmannica (AA) plants. Somatic embryos were produced when immature and mature zygotic embryo explants were cultured on Murashige and Skoog medium supplemented with plant growth regulators 2,4-dichlorophenoxyacetic acid; (2,4-D), picloram or benzyl adenine and indole acetic acid. In general, immature embryos responded better than mature embryos. Callus proliferation was highest in medium supplemented with 2,4-D (4.5 μM). Subsequent transfer of callus to fresh medium produced rapidly proliferating embryogenic calli. Embryogenic calli were maintained in complete darkness for 15 d followed by cycles of 8 h dark and 16 h light, under white fluorescent lamps with a light intensity of 3,000 lm/m2 and at temperature of 28 ± 2°C. Regeneration of embryogenic calli into plantlets was higher for immature embryos (76.6%) than for mature embryos (50.6%). This plant regeneration protocol using mature or immature zygotic embryos, via somatic embryogenesis, has significant potential to improve germination efficiencies of hybrid progenies used in conventional breeding strategies. Furthermore, tests on seed storage showed that seed viability rapidly decline after harvesting and was negligible after 9 mo of storage. This indicates using freshly harvested seeds as explant material is necessary for maximizing the tissue culture response.