QRS complex detecting algorithm is core of ECG auto-diagnosis method and deeply influences cardiac cycle division for signal compression. However, ECG signals collected by noninvasive surface electrodes areusually mixed with several kinds of interference, and its waveform variation is the main reason for the hard realization of ECG processing. This paper proposes a QRS complex detecting algorithm based on multi-resolution mathematical morphological decomposition. This algorithm possesses superiorities in R peak detection of both mathematical morphological method and multi-resolution decomposition. Moreover, a lifting constructing method with Maximizationupdating operator is adopted to further improve the algorithm performance. And an efficient R peak search-back algorithm is employed to reduce the false positives (FP) and false negatives (FN). The proposed algorithm provides a good performance applying to MIT-BIH Arrhythmia Database, and achieves over 99% detection rate, sensitivity and positive predictivity, respectively, and calculation burden is low. Therefore, the proposed method is appropriate for portable medical devices in Telemedicine system.
Read full abstract